std::ranges::fold_right_last

From cppreference.com
< cpp‎ | algorithm‎ | ranges
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
(C++11)
(C++11)
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
(C++11)


C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
(C++23)
(C++23)
(C++23)
fold_right_last
(C++23)
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std::bidirectional_iterator I, std::sentinel_for <I> S,

/*indirectly-binary-right-foldable*/ < std::iter_value_t <I>, I> F >
requires std::constructible_from <
std::iter_value_t <I>, std::iter_reference_t <I>>
constexpr auto

    fold_right_last( I first, S last, F f ) ;
(1) (since C++23)
template < ranges::bidirectional_range R,

/*indirectly-binary-right-foldable*/ <
ranges::range_value_t <R>, ranges::iterator_t <R>> F >
requires std::constructible_from <
ranges::range_value_t <R>, ranges::range_reference_t <R>>
constexpr auto

    fold_right_last( R&& r, F f ) ;
(2) (since C++23)
Helper concepts
template < class F, class T, class I >
concept /*indirectly-binary-left-foldable*/ = /* see description */ ;
(3) (exposition only*)
template < class F, class T, class I >
concept /*indirectly-binary-right-foldable*/ = /* see description */ ;
(4) (exposition only*)

Right-folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(x1, f(x2, ...f(xn-1, xn))), where x1, x2, ..., xn

Informally, ranges::fold_right_last behaves like std:: fold_left ( ranges::reverse (r), *--last, /*flipped*/ (f) )

The behavior is undefined if [ first last )

1) The range is [firstlast). Given U as decltype( ranges::fold_right (first, last, std::iter_value_t <I> ( *first), f) ) , equivalent to:
if (first == last)
    return std::optional<U>();
I tail = ranges::prev(ranges::next(first, std::move(last)));
return std::optional<U>(std::in_place, ranges::fold_right(std::move(first), tail,
    std::iter_value_t<I>(*tail), std::move(f)));
2) Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last
3) Equivalent to:
Helper concepts
template < class F, class T, class I, class U >

concept /*indirectly-binary-left-foldable-impl*/ =
std::movable <T> &&
std::movable <U> &&
std::convertible_to <T, U> &&
std::invocable <F&, U, std::iter_reference_t <I>> &&
std::assignable_from <U&,

std::invoke_result_t <F&, U, std::iter_reference_t <I>>> ;
(3A) (exposition only*)
template < class F, class T, class I >

concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible <F> &&
std::indirectly_readable <I> &&
std::invocable <F&, T, std::iter_reference_t <I>> &&
std::convertible_to < std::invoke_result_t <F&, T, std::iter_reference_t <I>>,
std::decay_t < std::invoke_result_t <F&, T, std::iter_reference_t <I>>>> &&
/*indirectly-binary-left-foldable-impl*/ <F, T, I,

std::decay_t < std::invoke_result_t <F&, T, std::iter_reference_t <I>>>> ;
(3B) (exposition only*)
4) Equivalent to:
Helper concepts
template < class F, class T, class I >

concept /*indirectly-binary-right-foldable*/ =

/*indirectly-binary-left-foldable*/ < /*flipped*/ <F>, T, I> ;
(4A) (exposition only*)
Helper class templates
template < class F >

class /*flipped*/
{
    F f; // exposition only
public :
template < class T, class U >
        requires std::invocable <F&, U, T>
std::invoke_result_t <F&, U, T> operator( ) ( T&&, U&& ) ;

} ;
(4B) (exposition only*)

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Parameters

first, last - the range of elements to fold
r - the range of elements to fold
f - the binary function object

Return value

An object of type std::optional<U> that contains the result of right-fold of the given range over f

If the range is empty, std::optional <U> ( )

Possible implementations

struct fold_right_last_fn
{
    template<std::bidirectional_iterator I, std::sentinel_for<I> S,
             /*indirectly-binary-right-foldable*/<std::iter_value_t<I>, I> F>
    requires
        std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>>
    constexpr auto operator()(I first, S last, F f) const
    {
        using U = decltype(
            ranges::fold_right(first, last, std::iter_value_t<I>(*first), f));
 
        if (first == last)
            return std::optional<U>();
        I tail = ranges::prev(ranges::next(first, std::move(last)));
        return std::optional<U>(std::in_place,
            ranges::fold_right(std::move(first), tail, std::iter_value_t<I>(*tail),
                               std::move(f)));
    }
 
    template<ranges::bidirectional_range R,
             /*indirectly_binary_right_foldable*/<
                 ranges::range_value_t<R>, ranges::iterator_t<R>> F>
    requires
        std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>>
    constexpr auto operator()(R&& r, F f) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), std::ref(f));
    }
};
 
inline constexpr fold_right_last_fn fold_right_last;

Complexity

Exactly ranges::distance(first, last) applications of the function object f

Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges::fold_left left init U
ranges::fold_left_first left first element std::optional<U>
ranges::fold_right right init U
ranges::fold_right_last right last element std::optional<U>
ranges::fold_left_with_iter left init

(1) ranges::in_value_result<I, U>

(2) ranges::in_value_result<BR, U>,

where BR is ranges::borrowed_iterator_t<R>

ranges::fold_left_first_with_iter left first element

(1) ranges::in_value_result <I, std::optional <U>>

(2) ranges::in_value_result <BR, std::optional <U>>

where BR is ranges::borrowed_iterator_t<R>

Feature-test macro Value Std Feature
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms

Example

#include <algorithm>
#include <functional>
#include <iostream>
#include <ranges>
#include <utility>
#include <vector>
 
int main()
{
    auto v = {1, 2, 3, 4, 5, 6, 7, 8};
    std::vector<std::string> vs {"A", "B", "C", "D"};
 
    auto r1 = std::ranges::fold_right_last(v.begin(), v.end(), std::plus<>()); // (1)
    std::cout << "*r1: " << *r1 << '\n';
 
    auto r2 = std::ranges::fold_right_last(vs, std::plus<>()); // (2)
    std::cout << "*r2: " << *r2 << '\n';
 
    // Use a program defined function object (lambda-expression):
    auto r3 = std::ranges::fold_right_last(v, [](int x, int y) { return x + y + 99; });
    std::cout << "*r3: " << *r3 << '\n';
 
    // Get the product of the std::pair::second of all pairs in the vector:
    std::vector<std::pair<char, float>> data {{'A', 3.f}, {'B', 3.5f}, {'C', 4.f}};
    auto r4 = std::ranges::fold_right_last
    (
        data | std::ranges::views::values, std::multiplies<>()
    );
    std::cout << "*r4: " << *r4 << '\n';
}

Output:

*r1: 36
*r2: ABCD
*r3: 729
*r4: 42

References

  • C++23 standard (ISO/IEC 14882:2024):
  • 27.6.18 Fold [alg.fold]

See also

right-folds a range of elements
(algorithm function object)
left-folds a range of elements
(algorithm function object)
left-folds a range of elements using the first element as an initial value
(algorithm function object)
left-folds a range of elements, and returns a pair (iterator, value)
(algorithm function object)
left-folds a range of elements using the first element as an initial value, and returns a pair (iterator, optional)
(algorithm function object)
sums up or folds a range of elements
(function template)
(C++17)
similar to std::accumulate, except out of order
(function template)