std::ranges::next

From cppreference.com
< cpp‎ | iterator
Iterator library
Iterator concepts
Iterator primitives
Algorithm concepts and utilities
Indirect callable concepts
Common algorithm requirements
(C++20)
(C++20)
(C++20)
Utilities
(C++20)
Iterator adaptors
Iterator operations
(C++11)
(C++11)
(C++20)
(C++20)
ranges::next
(C++20)
Range access
(C++11)(C++14)
(C++14)(C++14)
(C++11)(C++14)
(C++14)(C++14)
(C++17)(C++20)
(C++17)
(C++17)
Defined in header <iterator>
Call signature
template < std::input_or_output_iterator I >
constexpr I next( I i ) ;
(1) (since C++20)
template < std::input_or_output_iterator I >
constexpr I next( I i, std::iter_difference_t <I> n ) ;
(2) (since C++20)
template < std::input_or_output_iterator I, std::sentinel_for <I> S >
constexpr I next( I i, S bound ) ;
(3) (since C++20)
template < std::input_or_output_iterator I, std::sentinel_for <I> S >
constexpr I next( I i, std::iter_difference_t <I> n, S bound ) ;
(4) (since C++20)

Return the nth successor of iterator i.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Parameters

i - an iterator
n - number of elements to advance
bound - sentinel denoting the end of the range i points to

Return value

1) The successor of iterator i.
2) The nth successor of iterator i.
3) The first iterator equivalent to bound.
4) The n th successor of iterator i, or the first iterator equivalent to bound

Complexity

1) Constant.
2) Constant if I models std::random_access_iterator
3) Constant if I and S models both std::random_access_iterator<I> and std::sized_sentinel_for<S, I> , or if I and S models std::assignable_from <I&, S>
4) Constant if I and S models both std::random_access_iterator<I> and std::sized_sentinel_for<S, I>

Possible implementation

struct next_fn
{
    template<std::input_or_output_iterator I>
    constexpr I operator()(I i) const
    {
        ++i;
        return i;
    }
 
    template<std::input_or_output_iterator I>
    constexpr I operator()(I i, std::iter_difference_t<I> n) const
    {
        ranges::advance(i, n);
        return i;
    }
 
    template<std::input_or_output_iterator I, std::sentinel_for<I> S>
    constexpr I operator()(I i, S bound) const
    {
        ranges::advance(i, bound);
        return i;
    }
 
    template<std::input_or_output_iterator I, std::sentinel_for<I> S>
    constexpr I operator()(I i, std::iter_difference_t<I> n, S bound) const
    {
        ranges::advance(i, n, bound);
        return i;
    }
};
 
inline constexpr auto next = next_fn();

Notes

Although the expression ++x.begin() often compiles, it is not guaranteed to do so: x.begin() is an rvalue expression, and there is no requirement that specifies that increment of an rvalue is guaranteed to work. In particular, when iterators are implemented as pointers or its operator++ is lvalue-ref-qualified, ++x.begin() does not compile, while ranges::next(x.begin())

Example

#include <cassert>
#include <iterator>
 
int main() 
{
    auto v = {3, 1, 4};
    {
        auto n = std::ranges::next(v.begin());
        assert(*n == 1);
    }
    {
        auto n = std::ranges::next(v.begin(), 2);
        assert(*n == 4);
    }
    {
        auto n = std::ranges::next(v.begin(), v.end());
        assert(n == v.end());
    }
    {
        auto n = std::ranges::next(v.begin(), 42, v.end());
        assert(n == v.end());
    }
}

See also

(C++20)
decrement an iterator by a given distance or to a bound
(algorithm function object)
(C++20)
advances an iterator by given distance or to a given bound
(algorithm function object)
(C++11)
increment an iterator
(function template)