std::ranges::fold_left_first_with_iter, std::ranges::fold_left_first_with_iter_result

From cppreference.com
< cpp‎ | algorithm‎ | ranges
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
(C++11)
(C++11)
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
(C++11)


C library
Numeric operations
Operations on uninitialized memory
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
Permutation operations
Fold operations
(C++23)
(C++23)
(C++23)
(C++23)
fold_left_first_with_iter
(C++23)
Operations on uninitialized storage
Return types
Defined in header <algorithm>
Call signature
template < std::input_iterator I, std::sentinel_for <I> S,

/*indirectly-binary-left-foldable*/ < std::iter_value_t <I>, I> F >
requires std::constructible_from <
std::iter_value_t <I>, std::iter_reference_t <I>>
constexpr /* see description */

    fold_left_first_with_iter( I first, S last, F f ) ;
(1) (since C++23)
template < ranges::input_range R,

/*indirectly-binary-left-foldable*/ <
ranges::range_value_t <R>, ranges::iterator_t <R>> F >
requires std::constructible_from <
ranges::range_value_t <R>, ranges::range_reference_t <R>>
constexpr /* see description */

    fold_left_first_with_iter( R&& r, F f ) ;
(2) (since C++23)
Helper concepts
template < class F, class T, class I >
concept /*indirectly-binary-left-foldable*/ = /* see description */ ;
(3) (exposition only*)
Helper class template
template < class I, class T >
using fold_left_first_with_iter_result = ranges::in_value_result <I, T> ;
(4) (since C++23)

Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:
f(f(f(f(x1, x2), x3), ...), xn), where x1, x2, ..., xn

Informally, ranges::fold_left_first_with_iter behaves like std::accumulate's overload that accepts a binary predicate, except that the *first

The behavior is undefined if [ first last )

1) The range is [firstlast)
2) Same as (1), except that uses r as the range, as if by using ranges::begin(r) as first and ranges::end(r) as last
3) Equivalent to:
Helper concepts
template < class F, class T, class I, class U >

concept /*indirectly-binary-left-foldable-impl*/ =
std::movable <T> &&
std::movable <U> &&
std::convertible_to <T, U> &&
std::invocable <F&, U, std::iter_reference_t <I>> &&
std::assignable_from <U&,

std::invoke_result_t <F&, U, std::iter_reference_t <I>>> ;
(3A) (exposition only*)
template < class F, class T, class I >

concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible <F> &&
std::indirectly_readable <I> &&
std::invocable <F&, T, std::iter_reference_t <I>> &&
std::convertible_to < std::invoke_result_t <F&, T, std::iter_reference_t <I>>,
std::decay_t < std::invoke_result_t <F&, T, std::iter_reference_t <I>>>> &&
/*indirectly-binary-left-foldable-impl*/ <F, T, I,

std::decay_t < std::invoke_result_t <F&, T, std::iter_reference_t <I>>>> ;
(3B) (exposition only*)
4) The return type alias. See "Return value" section for details.

The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:

Parameters

first, last - the range of elements to fold
r - the range of elements to fold
f - the binary function object

Return value

Let U be decltype( ranges::fold_left (std:: move (first), last, std::iter_value_t <I> ( *first), f) )

1) An object of type ranges:: fold_left_first_with_iter_result <I, std::optional <U>> .
  • The member ranges::in_value_result::in
  • The member ranges::in_value_result::value holds the result of the left-fold of given range over f
If the range is empty, the return value is {std:: move (first), std::optional <U> ( ) }
2) Same as (1) except that the return type is ranges:: fold_left_first_with_iter_result < ranges::borrowed_iterator_t <R>, std::optional <U>>

Possible implementations

class fold_left_first_with_iter_fn
{
    template<class O, class I, class S, class F>
    constexpr auto impl(I&& first, S&& last, F f) const
    {
        using U = decltype(
            ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first), f)
        );
        using Ret = ranges::fold_left_first_with_iter_result<O, std::optional<U>>;
        if (first == last)
            return Ret{std::move(first), std::optional<U>()};
        std::optional<U> init(std::in_place, *first);
        for (++first; first != last; ++first)
            *init = std::invoke(f, std::move(*init), *first);
        return Ret{std::move(first), std::move(init)};
    }
 
public:
    template<std::input_iterator I, std::sentinel_for<I> S,
             /*indirectly-binary-left-foldable*/<std::iter_value_t<I>, I> F>
    requires std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>>
    constexpr auto operator()(I first, S last, F f) const
    {
        return impl<I>(std::move(first), std::move(last), std::ref(f));
    }
 
    template<ranges::input_range R, /*indirectly-binary-left-foldable*/<
        ranges::range_value_t<R>, ranges::iterator_t<R>> F>
    requires
        std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>>
    constexpr auto operator()(R&& r, F f) const
    {
        return impl<ranges::borrowed_iterator_t<R>>(
            ranges::begin(r), ranges::end(r), std::ref(f)
        );
    }
};
 
inline constexpr fold_left_first_with_iter_fn fold_left_first_with_iter;

Complexity

Exactly ranges::distance (first, last) - 1 (assuming the range is not empty) applications of the function object f

Notes

The following table compares all constrained folding algorithms:

Fold function template Starts from Initial value Return type
ranges::fold_left left init U
ranges::fold_left_first left first element std::optional<U>
ranges::fold_right right init U
ranges::fold_right_last right last element std::optional<U>
ranges::fold_left_with_iter left init

(1) ranges::in_value_result<I, U>

(2) ranges::in_value_result<BR, U>,

where BR is ranges::borrowed_iterator_t<R>

ranges::fold_left_first_with_iter left first element

(1) ranges::in_value_result <I, std::optional <U>>

(2) ranges::in_value_result <BR, std::optional <U>>

where BR is ranges::borrowed_iterator_t<R>

Feature-test macro Value Std Feature
__cpp_lib_ranges_fold 202207L (C++23) std::ranges fold algorithms

Example

#include <algorithm>
#include <cassert>
#include <functional>
#include <iostream>
#include <ranges>
#include <utility>
#include <vector>
 
int main()
{
    std::vector v{1, 2, 3, 4, 5, 6, 7, 8};
 
    auto sum = std::ranges::fold_left_first_with_iter
    (
        v.begin(), v.end(), std::plus<int>()
    );
    std::cout << "sum: " << sum.value.value() << '\n';
    assert(sum.in == v.end());
 
    auto mul = std::ranges::fold_left_first_with_iter(v, std::multiplies<int>());
    std::cout << "mul: " << mul.value.value() << '\n';
    assert(mul.in == v.end());
 
    // get the product of the std::pair::second of all pairs in the vector:
    std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 7.f}};
    auto sec = std::ranges::fold_left_first_with_iter
    (
        data | std::ranges::views::values, std::multiplies<>()
    );
    std::cout << "sec: " << sec.value.value() << '\n';
 
    // use a program defined function object (lambda-expression):
    auto lambda = [](int x, int y) { return x + y + 2; };
    auto val = std::ranges::fold_left_first_with_iter(v, lambda);
    std::cout << "val: " << val.value.value() << '\n';
    assert(val.in == v.end());
}

Output:

sum: 36
mul: 40320
sec: 42
val: 50

References

  • C++23 standard (ISO/IEC 14882:2024):
  • 27.6.18 Fold [alg.fold]

See also

left-folds a range of elements
(algorithm function object)
left-folds a range of elements using the first element as an initial value
(algorithm function object)
right-folds a range of elements
(algorithm function object)
right-folds a range of elements using the last element as an initial value
(algorithm function object)
left-folds a range of elements, and returns a pair (iterator, value)
(algorithm function object)
sums up or folds a range of elements
(function template)
(C++17)
similar to std::accumulate, except out of order
(function template)