std::ratio_divide

From cppreference.com
< cpp‎ | numeric‎ | ratio
Metaprogramming library
Type traits
Type categories
(C++11)
(C++11)(DR*)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Type properties
(C++11)
(C++11)
(C++11)
(C++11)
(C++14)
(C++11)
(C++17)
(C++11)(deprecated in C++26)
(C++11)(until C++20*)
(C++11)(deprecated in C++20)
(C++11)
(C++11)
(C++23)
Type trait constants
(C++11) (C++17) (C++11) (C++11)
Metafunctions
(C++17)
(C++17)
(C++17)
Supported operations
Relationships and property queries
(C++11)
(C++11)
(C++11)
(C++11)
Type modifications
(C++11)(C++11)(C++11)
(C++11)(C++11)(C++11)
(C++11)
(C++11)
Type transformations
(C++11)(deprecated in C++23)
(C++11)(deprecated in C++23)
(C++11)
(C++20)
(C++11)(until C++20*)(C++17)

(C++11)
(C++11)
(C++11)
(C++20)
(C++11)
(C++17)
Compile-time rational arithmetic
Compile-time integer sequences
Compile time rational arithmetic
(C++11)
Arithmetic
(C++11)
(C++11)
(C++11)
ratio_divide
(C++11)
Comparison
(C++11)
(C++11)
(C++11)
(C++11)
Defined in header <ratio>
template < class R1, class R2 >
using ratio_divide = /* see below */ ;
(since C++11)

The alias template std::ratio_divide denotes the result of dividing two exact rational fractions represented by the std::ratio specializations R1 and R2

The result is a std::ratio specialization std::ratio<U, V>, such that given Num == R1::num * R2::den and Denom == R1::den * R2::num (computed without arithmetic overflow), U is std::ratio <Num, Denom> :: num and V is std::ratio <Num, Denom> :: den

Notes

If U or V is not representable in std::intmax_t, the program is ill-formed. If Num or Denom is not representable in std::intmax_t, the program is ill-formed unless the implementation yields correct values for U and V

The above definition requires that the result of std::ratio_divide<R1, R2> be already reduced to lowest terms; for example, std:: ratio_divide < std::ratio < 1, 12 >, std::ratio < 1, 6 >> is the same type as std::ratio<1, 2>

Example

#include <iostream>
#include <ratio>
 
int main()
{
    using two_third = std::ratio<2, 3>;
    using one_sixth = std::ratio<1, 6>;
    using quotient = std::ratio_divide<two_third, one_sixth>;
    static_assert(std::ratio_equal_v<quotient, std::ratio<0B100, 0X001>>);
    std::cout << "(2/3) / (1/6) = " << quotient::num << '/' << quotient::den << '\n';
}

Output:

(2/3) / (1/6) = 4/1

See also

(C++11)
multiplies two ratio objects at compile-time
(alias template)