std::trunc, std::truncf, std::

From cppreference.com
< cpp‎ | numeric‎ | math
Common mathematical functions
Functions
Basic operations
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Exponential functions
(C++11)
(C++11)

(C++11)
(C++11)
Power functions
(C++11)
(C++11)
Trigonometric and
hyperbolic functions
(C++11)
(C++11)
(C++11)

Error and gamma functions
(C++11)
(C++11)
(C++11)
(C++11)
Nearest integer floating point operations
(C++11)(C++11)(C++11)
trunc
(C++11)
(C++11)
(C++11)(C++11)(C++11)
Floating point manipulation functions
(C++11)(C++11)
(C++11)
(C++11)
(C++11)(C++11)
(C++11)
Classification and comparison
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Types
(C++11)
(C++11)
(C++11)
(C++11)
Macro constants
Classification
(C++11) (C++11) (C++11) (C++11) (C++11)


Defined in header <cmath>
(1)
float       trunc ( float num ) ;

double      trunc ( double num );

long double trunc ( long double num ) ;
(until C++23)
constexpr /*floating-point-type*/
            trunc ( /*floating-point-type*/ num ) ;
(since C++23)
float       truncf( float num );
(2) (since C++11)
(constexpr since C++23)
long double truncl( long double num ) ;
(3) (since C++11)
(constexpr since C++23)
SIMD overload (since C++26)
Defined in header <simd>
template < /*math-floating-point*/ V >

constexpr /*deduced-simd-t*/<V>

            trunc ( const V& v_num ) ;
(S) (since C++26)
Additional overloads (since C++11)
Defined in header <cmath>
template < class Integer >
double      trunc ( Integer num ) ;
(A) (constexpr since C++23)
1-3) Computes the nearest integer not greater in magnitude than num. The library provides overloads of std::trunc for all cv-unqualified floating-point types as the type of the parameter. (since C++23)
S) The SIMD overload performs an element-wise std::trunc on v_num.
(See math-floating-point and deduced-simd-t
(since C++26)
A) Additional overloads are provided for all integer types, which are treated as double.
(since C++11)

Parameters

num - floating-point or integer value

Return value

If no errors occur, the nearest integer value not greater in magnitude than num (in other words, num

Return value
math-trunc.svg
num

Error handling

Errors are reported as specified in math_errhandling.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • The current rounding mode has no effect.
  • If num is ±∞, it is returned, unmodified.
  • If num is ±0, it is returned, unmodified.
  • If num is NaN, NaN is returned.

Notes

FE_INEXACT may be (but isn't required to be) raised when truncating a non-integer finite value.

The largest representable floating-point values are exact integers in all standard floating-point formats, so this function never overflows on its own; however the result may overflow any integer type (including std::intmax_t

The implicit conversion

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::trunc(num) has the same effect as std:: trunc ( static_cast < double > (num) )

Example

#include <cmath>
#include <initializer_list>
#include <iostream>
 
int main()
{
    const auto data = std::initializer_list<double>
    {
        +2.7, -2.9, +0.7, -0.9, +0.0, 0.0, -INFINITY, +INFINITY, -NAN, +NAN
    };
 
    std::cout << std::showpos;
    for (double const x : data)
        std::cout << "trunc(" << x << ") == " << std::trunc(x) << '\n';
}

Possible output:

trunc(+2.7) == +2
trunc(-2.9) == -2
trunc(+0.7) == +0
trunc(-0.9) == -0
trunc(+0) == +0
trunc(+0) == +0
trunc(-inf) == -inf
trunc(+inf) == +inf
trunc(-nan) == -nan
trunc(+nan) == +nan

See also

(C++11)(C++11)
nearest integer not greater than the given value
(function)
(C++11)(C++11)
nearest integer not less than the given value
(function)
(C++11) (C++11) (C++11) (C++11) (C++11) (C++11) (C++11) (C++11) (C++11)
nearest integer, rounding away from zero in halfway cases
(function)
C documentation for trunc