Explicit (full) template specialization

From cppreference.com
< cpp‎ | language
C++ language
General topics
Flow control
Conditional execution statements
Iteration statements (loops)
for
range-for (C++11)
Jump statements
Functions
Function declaration
Lambda function expression
inline specifier
Dynamic exception specifications (until C++17*)
noexcept specifier (C++11)
Exceptions
Namespaces
Types
Specifiers
const/volatile
decltype (C++11)
auto (C++11)
constexpr (C++11)
consteval (C++20)
constinit (C++20)
Storage duration specifiers
Initialization
Expressions
Alternative representations
Literals
Boolean - Integer - Floating-point
Character - String - nullptr (C++11)
User-defined (C++11)
Utilities
Attributes (C++11)
Types
typedef declaration
Type alias declaration (C++11)
Casts
Memory allocation
Classes
Class-specific function properties
explicit (C++11)
static

Special member functions
Templates
Template specialization
Parameter packs (C++11)
Miscellaneous

Allows customizing the template code for a given set of template arguments.

Syntax

template <> declaration

Any of the following can be fully specialized:

  1. function template
  2. class template
  3. variable template(since C++14)
  4. member function of a class template
  5. static data member of a class template
  6. member class of a class template
  7. member enumeration of a class template
  8. member class template of a class or class template
  9. member function template of a class or class template
  10. member variable template of a class or class template (since C++14)

For example,

#include <type_traits>
 
template<typename T> // primary template
struct is_void : std::false_type {};
template<>           // explicit specialization for T = void
struct is_void<void> : std::true_type {};
 
int main()
{
    static_assert(is_void<char>::value == false,
        "for any type T other than void, the class is derived from false_type");
    static_assert(is_void<void>::value == true,
        "but when T is void, the class is derived from true_type");
}

In detail

Explicit specialization may be declared in any scope where its primary template may be defined (which may be different from the scope where the primary template is defined; such as with out-of-class specialization of a member template

namespace N
{
    template<class T> // primary template
    class X { /*...*/ };
    template<>        // specialization in same namespace
    class X<int> { /*...*/ };
 
    template<class T> // primary template
    class Y { /*...*/ };
    template<>        // forward declare specialization for double
    class Y<double>;
}
 
template<> // OK: specialization in same namespace
class N::Y<double> { /*...*/ };

Specialization must be declared before the first use that would cause implicit instantiation, in every translation unit where such use occurs:

class String {};
 
template<class T>
class Array { /*...*/ };
 
template<class T> // primary template
void sort(Array<T>& v) { /*...*/ }
 
void f(Array<String>& v)
{
    sort(v); // implicitly instantiates sort(Array<String>&), 
}            // using the primary template for sort()
 
template<> // ERROR: explicit specialization of sort(Array<String>)
void sort<String>(Array<String>& v); // after implicit instantiation

A template specialization that was declared but not defined can be used just like any other incomplete type

template<class T> // primary template
class X;
template<>        // specialization (declared, not defined)
class X<int>;
 
X<int>* p; // OK: pointer to incomplete type
X<int> x;  // error: object of incomplete type

Whether an explicit specialization of a functionor variable(since C++14) template is inline /constexpr(since C++11) /constinit/consteval (since C++20) is determined by the explicit specialization itself, regardless of whether the primary template is declared with that specifier. Similarly, attributes appearing in the declaration of a template have no effect on an explicit specialization of that template: (since C++11)

template<class T>
void f(T) { /* ... */ }
template<>
inline void f<>(int) { /* ... */ } // OK, inline
 
template<class T>
inline T g(T) { /* ... */ }
template<>
int g<>(int) { /* ... */ }         // OK, not inline
 
template<typename>
[[noreturn]] void h([[maybe_unused]] int i);
template<> void h<int>(int i)
{
    // [[noreturn]] has no effect, but [[maybe_unused]] has
}

Explicit specializations of function templates

When specializing a function template, its template arguments can be omitted if template argument deduction

template<class T>
class Array { /*...*/ };
 
template<class T> // primary template
void sort(Array<T>& v);
template<>        // specialization for T = int
void sort(Array<int>&);
 
// no need to write
// template<> void sort<int>(Array<int>&);

A function with the same name and the same argument list as a specialization is not a specialization (see template overloading in function template).

Default function arguments

An explicit specialization cannot be a friend declaration.

Members of specializations

When defining a member of an explicitly specialized class template outside the body of the class, the syntax template<> is not used, except if it's a member of an explicitly specialized member class template, which is specialized as a class template, because otherwise, the syntax would require such definition to begin with template<parameters>

template<typename T>
struct A
{
    struct B {};      // member class 
 
    template<class U> // member class template
    struct C {};
};
 
template<> // specialization
struct A<int> 
{
    void f(int); // member function of a specialization
};
// template<> not used for a member of a specialization
void A<int>::f(int) { /* ... */ }
 
template<> // specialization of a member class
struct A<char>::B
{
    void f();
};
// template<> not used for a member of a specialized member class either
void A<char>::B::f() { /* ... */ }
 
template<> // specialization of a member class template
template<class U>
struct A<char>::C
{
    void f();
};
 
// template<> is used when defining a member of an explicitly
// specialized member class template specialized as a class template
template<>
template<class U>
void A<char>::C<U>::f() { /* ... */ }


An explicit specialization of a static data member of a template is a definition if the declaration includes an initializer; otherwise, it is a declaration. These definitions must use braces for default initialization:

template<>
X Q<int>::x;    // declaration of a static member
template<>
X Q<int>::x (); // error: function declaration
template<>
X Q<int>::x {}; // definition of a default-initialized static member

A member or a member template of a class template may be explicitly specialized for a given implicit instantiation of the class template, even if the member or member template is defined in the class template definition.

template<typename T>
struct A
{
    void f(T);         // member, declared in the primary template
 
    void h(T) {}       // member, defined in the primary template
 
    template<class X1> // member template
    void g1(T, X1);
 
    template<class X2> // member template
    void g2(T, X2);
};
 
// specialization of a member
template<>
void A<int>::f(int);
 
// member specialization OK even if defined in-class
template<>
void A<int>::h(int) {}
 
// out of class member template definition
template<class T>
template<class X1>
void A<T>::g1(T, X1) {}
 
// member template specialization
template<>
template<class X1>
void A<int>::g1(int, X1);
 
// member template specialization
template<>
template<>
void A<int>::g2<char>(int, char); // for X2 = char
 
// same, using template argument deduction (X1 = char)
template<> 
template<>
void A<int>::g1(int, char);

A member or a member template may be nested within many enclosing class templates. In an explicit specialization for such a member, there's a template<>

template<class T1>
struct A
{
    template<class T2>
    struct B
    {
        template<class T3>
        void mf();
    };
};
 
template<>
struct A<int>;
 
template<>
template<>
struct A<char>::B<double>;
 
template<>
template<>
template<>
void A<char>::B<char>::mf<double>();

In such a nested declaration, some of the levels may remain unspecialized (except that it can't specialize a class member template in namespace scope if its enclosing class is unspecialized). For each of those levels, the declaration needs template<arguments>

template<class T1>
class A
{
    template<class T2>
    class B
    {
        template<class T3> // member template
        void mf1(T3);
 
        void mf2();        // non-template member
    };
};
 
// specialization
template<>        // for the specialized A
template<class X> // for the unspecialized B
class A<int>::B
{
    template<class T>
    void mf1(T);
};
 
// specialization
template<>        // for the specialized A
template<>        // for the specialized B
template<class T> // for the unspecialized mf1
void A<int>::B<double>::mf1(T t) {}
 
// ERROR: B<double> is specialized and is a member template, so its enclosing A
// must be specialized also
template<class Y>
template<>
void A<Y>::B<double>::mf2() {}

Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
CWG 531 C++98 the syntax of defining members of explicit
specializations in namespace scope was not specified
specified
CWG 727 C++98 partial and full specializations not allowed in
class scope
allowed in any scope
CWG 730 C++98 member templates of non-template
classes could not be fully specialized
allowed
CWG 2478 C++20 it was unclear whether the constinit and consteval of the
primary template are carried over into its explicit specializations
not carried over
CWG 2604 C++11 it was unclear whether the attributes of the primary
template are carried over into its explicit specializations
not carried over

See also