C Operator Precedence

From cppreference.com
< c‎ | language

The following table lists the precedence and associativity of C operators. Operators are listed top to bottom, in descending precedence.

Precedence Operator Description Associativity
1 ++ -- Suffix/postfix increment and decrement Left-to-right
() Function call
[] Array subscripting
. Structure and union member access
-> Structure and union member access through pointer
(type){list} Compound literal(C99)
2 ++ -- Prefix increment and decrement[note 1] Right-to-left
+ - Unary plus and minus
! ~ Logical NOT and bitwise NOT
(type) Cast
* Indirection (dereference)
& Address-of
sizeof Size-of[note 2]
_Alignof Alignment requirement(C11)
3 * / % Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction
5 << >> Bitwise left shift and right shift
6 < <= For relational operators < and ≤ respectively
> >= For relational operators > and ≥ respectively
7 == != For relational = and ≠ respectively
8 & Bitwise AND
9 ^ Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
11 && Logical AND
12 || Logical OR
13 ?: Ternary conditional[note 3] Right-to-left
14[note 4] = Simple assignment
+= -= Assignment by sum and difference
*= /= %= Assignment by product, quotient, and remainder
<<= >>= Assignment by bitwise left shift and right shift
&= ^= |= Assignment by bitwise AND, XOR, and OR
15 , Comma Left-to-right
  1. The operand of prefix ++ and --
  2. The operand of sizeof can't be a type cast: the expression sizeof (int) * p is unambiguously interpreted as (sizeof(int)) * p , but not sizeof((int)*p)
  3. The expression in the middle of the conditional operator (between ? and :) is parsed as if parenthesized: its precedence relative to ?: is ignored.
  4. Assignment operators' left operands must be unary (level-2 non-cast) expressions. This rule grammatically forbids some expressions that would be semantically invalid anyway. Many compilers ignore this rule and detect the invalidity semantically. For example, e = a < d ? a++ : a = d is an expression that cannot be parsed because of this rule. However, many compilers ignore this rule and parse it as e = ( ( (a < d) ? (a++ ) : a) = d )

When parsing an expression, an operator which is listed on some row will be bound tighter (as if by parentheses) to its arguments than any operator that is listed on a row further below it. For example, the expression *p++ is parsed as *(p++), and not as (*p)++

Operators that are in the same cell (there may be several rows of operators listed in a cell) are evaluated with the same precedence, in the given direction. For example, the expression a=b=c is parsed as a=(b=c), and not as (a=b)=c

Notes

Precedence and associativity are independent from order of evaluation.

The standard itself doesn't specify precedence levels. They are derived from the grammar.

In C++, the conditional operator has the same precedence as assignment operators, and prefix ++ and -- and assignment operators don't have the restrictions about their operands.

Associativity specification is redundant for unary operators and is only shown for completeness: unary prefix operators always associate right-to-left (sizeof ++*p is sizeof(++(*p)) ) and unary postfix operators always associate left-to-right ( a[1][2]++ is ( (a[ 1 ] ) [ 2 ] ) ++ ). Note that the associativity is meaningful for member access operators, even though they are grouped with unary postfix operators: a.b++ is parsed (a.b)++ and not a.(b++)

References

  • C17 standard (ISO/IEC 9899:2018):
  • A.2.1 Expressions
  • C11 standard (ISO/IEC 9899:2011):
  • A.2.1 Expressions
  • C99 standard (ISO/IEC 9899:1999):
  • A.2.1 Expressions
  • C89/C90 standard (ISO/IEC 9899:1990):
  • A.1.2.1 Expressions

See also

Order of evaluation of operator arguments at run time.

Common operators
assignment increment
decrement
arithmetic logical comparison member
access
other

a = b
a + = b
a - = b
a * = b
a / = b
a % = b
a & = b
a | = b
a ^ = b
a <<= b
a >>=

++a
--a
a++
a--

+a
-a
a + b
a - b
a * b
a / b
a % b
~a
a & b
a | b
a ^ b
a << b
a >>

!a
a && b
a || b

a == b
a ! = b
a < b
a > b
a <= b
a >=

a[b]
*a
&a
a- >b
a.b

a(...)
a, b
(type) a
a ? b : c
sizeof


_Alignof
(since C11)
(until C23)

alignof
(since C23)

C++ documentation for C++ operator precedence